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On the renormalisation group transformations for the linear 
Z(3) model with a magnetic field 

J C Cressoni and R J V dos Santos 
Departamento de Fisica, Universidade Federal de Alagoas, 57000 Macei6, Brazil 

Received 9 May 1985 

Abstract. The linear Z ( 3 )  spin system in the presence of a magnetic field is studied by a 
dedecoration renormalisation group ( RG) transformation. In order to perform the transfor- 
mation, non-usual terms must be added to the Hamiltonian. The linear region around a 
particular T = 0 fixed point, where these terms go to zero, is investigated and the 'critical 
behaviour' of the free energy, correlation function and susceptibility is obtained. The 
system is solved exactly and the results are compared with those obtained by the RG 
approach. Magnetisation and susceptibility curves against temperature are also shown. 

1. Introduction 

An example of an exact renormalisation group ( RG) transformation was given by 
Nelson and Fisher (1975) by performing dedecoration group transformations in the 
one-dimensional Ising model in the presence of an external magnetic field. The same 
procedures can be easily generalised to study a one-dimensional Z(  N )  spin system in 
zero magnetic field (Cressoni 1981). If we introduce a magnetic field, however, we 
note that to treat these models via RG theory one has to augment the dimensionality 
of their parameter spaces to make them closed by RG operations (i.e. having no different 
operators in the iterated Hamiltonians). This occurs just for N>3. since the Z ( 2 )  is 
the familiar Ising model whose Hamiltonian is already sufficiently general to be treated 
by the RG formalism. In this way, the usual Z( N )  Hamiltonian (Alcaraz and Koberle 
1981) 

A 
%!= - 2 &f,[(s ,s j ' )"+CC]+ZT 

( 1 . 1 )  m = l  

) + Z T  
A 2" n, - n,) 

= - (I,]) m = l  J,(cos N 

(1 . la)  

(1 . lb)  

where 
(i) ~ k N = l j s k = e x p ( 2 . r r i n ~ / ~ ) , n ~ = 0 , 1 , 2  , . . . ,  N - I ;  
(ii) &' is the largest integer smaller or equal to $ N ;  
(iii) ZT stands for Zeemann terms; 
(iv) ( ) indicates sum over nearest neighbours, 

must be generalised to guarantee that the iterated Hamiltonian will have a similar 
form. This can be done by modifying slightly the interaction in ( 1 . 1 ~ )  to J,,(S,S:)"+ 
J*,( S:S,)"', thus permitting the coupling constants to be complex (which introduces 
sine-like terms) and by considering new (anisotropic-like) terms of the form 

(1.2) J/,S f ( s; 1 " + J T ,  ( s:) 'sl" I # m  
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which, as the ZT, break the global Z( N )  symmetry ( ni + ni + A ,  mod N ) .  The resulting 
Hamiltonian will certainly be general enough to avoid the difficulty outlined above. 

We realised that the N = 3 case did not need complex coupling constants which 
reduces considerably the dimension of the parameter space. The N = 3 real coupling 
constants Hamiltonian can be written as 

- 

271( ni - nj) - i ) + j ( c o s  2.rr(ni+ nj) 

or 

35 
(S,,,, - 1) +y ( Sn,,3-,,, - 1)) - H (  Snz,O - 1) - X(  I + J + j +  H )  (1.4) 

I 

where I is a constant or spin independent term and X is the number of degre_es of 
freedom. The first Kronecker delta shows that the Z(3)  model (i.e. (1.4) with J = 0) 
is the scalar (or vector) 3-state Potts model. In fact, it is an easy task to verify that 
the Z ( N )  Hamiltonian ( l . l a )  generalises the scalar (and vector) N-state Potts model 
(Alcaraz and Koberle 1981). 

When J = .? this Hamiltonian displays a non-local symmetry of the following type: 
it remains unchanged under reflection of alternating spins through the n = 0 axis, i.e. 
O +  0, 1 + 2 and 2 + 1. Since the usual magnetisation order parameter (;(Si + S t ) )  = 
(cos(2.nni/3)) also displays such a symmetry, it can take on non-zero values at finite 
temperatures. Another order parameter has to be used if one wants to test whether 
the system respects the symmetry of the Hamiltonian in accordance with the Mermin- 
Wagner theorem or not. We will not go on further discussing the system described by 
(1.4) since our interest resides mainly in the study of regions where j = 0, i.e. where 
the usual Potts model is recovered. 

2. Renormalisation group transformation 

The dedecoration group we have used was defined by Fisher (1959) and applied to 
the linear Ising chain by Nelson and Fisher (1975). Given a set of three consecutive 
spins in tHe chain, we replace the central spin by a single bond joining the two external 
spins (see figure 1). The magnetic fields acting on the remaining spins s1 and s3 are 
changed by the quantities SL, and 6L, ( L  = H / (  KB T ) )  and the set of interactions { K }  
(with K = J / ( K B T ) )  is changed to { K ’ } .  By dedecorating every other spin we generate 
a RG transformation with spatial and spin rescaling factors b = 2 and c = 1, respectively. 
In terms of the new variables 

x = exp( -3K/2) y = exp(-L/2) z = exp(-31Z/2) (2.1) 

6 Li ( K ’ )  613 

51 s2 s3 51 S j  

Figure 1. The dedecoration transformation. R represents the RG operator, { K }  is the set 
of interactions and SL is the amount by which the magnetic field has to be changed. 

> *  
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one gets the following recursion relations: 

The spin-independent term is renormalised according to 

42 = 1 + 2x2y2z2 (2.5) 

where d 2  is a new variable defined as 42 = exp( C’+ K’+ k’+ L’)/exp[Z(C + K + 
k + L ) ]  with C standing for I / (  K B T ) .  

In the unit cube ( J > O ,  j > O )  the following fixed points may be found (see figure 
2 ) :  an attractive line of fixed points x* = z* = 1 (independent of y )  corresponding to 
T = CO; a ‘frozen’ fixed point ( x * ,  y*,  z * )  = (0, 0,O); and a ‘ferromagnetic’ fixed point 
at ( x * ,  y* ,  z * )  = ( 0 , 1 ,  1 )  corresponding to T = 0, j = 0, H = 0. This is the point in which 
we have an interest, since it implies J = O  (m_eaning that the usual Potts model is 
recovered). One also finds that the x = z (or J = J )  plane is closed by RG transformations 
(i.e. if x = z, then x’ = z’). However, since the fixed point of interest lies outside this 
region, this fact will not simplify an RG treatment of the general N-state Potts model. 
Figure 3 shows some typical trajectories in the x = z plane. 

On linearising the recursion relations about the fixed point (0, 1 , l )  with Ay = 1 - y  
and Az = 1 - z, one gets 

x’ - 2 x  J’-2? Az ’ -  A z  (2.6) 

where j = A y + A z / 2 .  Thus A x - 3 k / 2  is a marginal field. Its corresponding 
eigenoperator is essentially Z c o s [ 2 ~ ( n ,  + n,)/3].  

y =  e x p l - i  121 
T 

/ 
T z  0 

j = o ,  H =  0 

7 
z:exp I-3Ki21 

Figure 2. The unit cube J > 0, j >  0 in the (x, y ,  z )  space showing the fixed points for the 
b = 2  dedecoration group. The line x * = z * =  1, independent of y ,  is a continuum of 
attractive fixed points and corresponds to T = Q) (or J = i = 0). 
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x = z = e x p  i - 3 K 1 2 )  

Figure 3. Typical trajectories and fixed points in the x = z plane obtained from the recursion 
relations (2.2) and (2.3).  

Following Nelson and Fisher (1975) one obtains the free energy and correlation 
function predictions: 

f ( x ,  j j ,  Az) - X Y ( j / X ,  Az) (2.7) 

(2.8) 

G ( R , x , j j , A z ) - D ( R x , j / x , A z ) .  (2.9) 

- exp( -3K/2) Y[exp(3K/2)( L/2+ 3 k / 4 ) ,  3 k / 2 ]  

Strictly speaking, to arrive at (2.7) one must first be able to find the dependence on 
the constant terms appearing in (1.4). But near the critical point (0, 1, 1) we can write 

(2.10) 

Now, choosing I = -J - j - H we have I“’ = --I(’) - J‘” - H”’ after I iterations. There- 
fore the I dependence can be neglected as long as one remains inside the linear region. 

By recognising the scaling combination Rx = R / 5 (  T )  in (2.9) one obtains that the 
zero-field correlation length diverges as exp(3 K/2)  for j = 0. 

The low temperature properties can be immediately obtained. By differentiating 
(2.8) twice with respect to L one sees that the zero-field susceptibility diverges exponen- 
tially (for j = 0) as exp(3 K/2)  when K = J / (  K,T) + CO. Defining the reduced critical 
exponents in terms of the correlation length 5( T ) ,  i.e. 

( I  + J +  j +  H)’- 2(1+ J +  j +  H). 

x - 5’/” (2.11) A f = f - f c -  5- 

y =  v==2-ff. (2.12) 

‘ 2 - a ’ l u  

one obtains the exponent relations 

The hyperscaling relation dv = 2 - a, where d stands for the spatial dimensionality, 
must be compared with the last relation in (2.12). The scaling relation y = (2  - 7) v in 
combination with y = v furnishes 7 = 1. This result also comes from the renormalisation 
group identity (see Nelson and Fisher 1975) d - 2 1  7 = -2 In c*/ln b, remembering 
that c = 1, b = 2. 

All these results for the critical exponents are the same as those already known for 
the N = 2  case. 
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3. Exact results 

One can solve the model described by (1.4) using the transfer matrix formalism. Since 
this method is well known, we will just show the results without going into the details 
of the calculations. 

The transfer matrix T has the following structure: 

T = B E D  (3.1) i: 1 1) 
where B = exp[ - f(3 K + 3k + L)], E = exp( -3k/2 - L )  and D = exp( -3 K / 2  - L) .  
The eigenvalues are easily found to be 

A l = ~ { l + E + D + [ ( 1 - E - D ) 2 + 8 B 2 ] 1 / 2 }  (3.2) 
A 2  = f{ 1 + E + D - [( 1 - E - D ) 2 +  8B2]”’} (3.3) 

A3=E-D. (3.4) 
Thus, the free energy per degree of freedom defined by f = l imN+=(l/iV) In Z,, 

where 2, denotes the partition function, is readily written as 

F(K, E, L )  =In  h l .  (3.5) 
The matrix U that diagonalises T by a similarity transformation, i.e. ( U-’ TU), = 

AJ,, is 
A+ A-  0 

1 
U = -  B+ B- 1 (3.6) 

h i.. B- J 
where A , =  -2B[2B2+(1-A,)2]-1/2 and B,=(1-A,)[2B2+(l-A,)2]-”2 (here we 
have changed slightly the notation from A l  and  A 2  to A +  and  A-,  respectively). Therefore 
the magnetisation M = (f(S, + Sz) )  can be calculated, resulting in 

M ( K ,  2, L )  =; (A:  - B:). (3.7) 
Figure 4 shows spontaneous magnetisation curves, M ( K ,  k, L = 0) against 

exp( -3  K / 2 )  for various values of a = J /  J. The magnetisation can take on non-zero 
values at finite temperatures since it is_not an  order parameter for a # 0. 

The correlation function G( R, K,  K, L )  = ($( SL + St)f( S,. + Stt)) can also be calcu- 
lated (see, for example, McCoy and Wu 1973) resulting in 

G(R, K, k, L)=$(A:-B:)2+(A2/A,)R(A+A--B+B-)2]. (3.8) 
Using the fluctuation dissipation theorem (Stanley 1971) one obtains the magnetic 
susceptibility 

1 A l + A 2  
4KBT A 1  - A 2  

X ( T ,  H)=-- (A+A-  - B+B-)’ (3.9) 

Curves of the zero-field susceptibility in J units against x = exp( -3 K / 2 )  for various 
values of a = j / J  are shown in figure 5. One can see that when x+O (for cy > O ) ,  
J x a ( x )  goes to zero as - x ~ ~ ~ ~  In x. For a = 0 (now we must take the lim a + 0 first) 
the susceptibility diverges as ( -  l / x )  In x when x + 0. The divergence in the Ising case 
( N = 2 )  has the form (Stanley 1971) (-l/,f) I n %  with f = e x p ( - 2 K ) .  Both f and x 
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T 

x = exp I -  3KI 2) 

Figure4. M ,  ( K ,  H=O) againstexp(-3K/2)forvariousvaluesof a = j / J : a , = O * l ,  a2=& 
a )  = 1, a4 = 2, as = 4. The spontaneous magnetisation is not an order paraTeter for a f 0 
and so it can take on non-zero values at finite temperatures. As a + O  (i.e. J+O) the Z ( 3 )  
symmetry is recovered and M -* 0 for T # 0, as it should. 

x:exp i-3K121 

Figure 5. Susceptibility in J units against x=exp(-3K/2) for various values of a = 
J /  J :  a,  = 0, a2 = 5, a3 = 1, a4 = 2, a5 = 4. 

are the inverse of the statistical weights of the Ising and 3-state Potts models respectively. 
One defines the statistical weights of systems displaying the Z (  N) symmetry as 

a 
w, = exp 1 Km[cos(2.rrm/N)n - l](mod N )  n = 1 , 2 . .  . N -  1. 

m = l  

4. Exact results and RC predictions 

Near the fixed point (0, 1, 1) the free energy (3.5) can be written as 

f - x($ - y / x  + [ ( y / x ) Z  - y/x + 9/41”’} (4.1) 
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which confirms the RG prediction ( 2 . 7 ) .  The prediction for the correlation function 
also agrees with the exact result. In order to see this we note that, near (0, 1, l) ,  we get 

( A  2/ A 1 ) - ( 1 - 2 x g )  1 - 2 R x g  (4.2) 

in which g = [ ( j j / x ) ’  - j j / x  + 9/4]1’2. With respect to the R-independent part of 
G(R, K, k, L )  one has 

A, = -2[2g2 * g(  1 - ~ J / X ) ] - ” ~  (4.3) 

B,  = ( j j / x - 4 * g ) [ 2 g 2 * g ( l - 2 j j / x ) ] - ” 2 .  (4.4) 

and 

It is easy to see that (4.2), (4.3) and (4.4) confirm the RG prediction (2.9). 

5. Conclusions 

We focused on the feasibility of the dedecoration group transformation on Z (  N) 
models in a non-zero magnetic field. The zero-field case presents no difficulty. In fact, 
the N-general model in zero magnetic field is even easier to treat, both exactly and 
via RG formalism, than the N = 3 model in a non-zero magnetic field (Cressoni 1981). 
However, the introduction of a magnetic field is highly desirable in order to obtain, 
for example, the magnetisation and susceptibility critical behaviour. Therefore, we 
were led to reinvestigate the problem, taking advantage of the simplicity of the linear 
chain. In spite of having considered just the N = 3 case we are confident at the possibility 
of generalisation to N > 3 models and more complex lattices presently under investi- 
gation. 
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